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Abstract—Spike Sorting is a challenging problem in Com-
putational Neuroscience because of the complexity of neural
data. One of the greatest issues are overlapping clusters. This
paper focuses on the feature extraction step in the Spike Sorting
pipeline and proposes an adaptation of Principal Component
Analysis (PCA) to increase the separability between clusters. This
is achieved by weighting the features before applying PCA, taking
into consideration the multimodality and the distance between
probability distributions. The information extracted from the
characteristics of a multimodal distribution is the number of
modes (peaks). The distance between the probability distributions
is quantified using Jensen-Shannon divergence. The computed
information, number of modes and distance, is aggregated into
a coefficient representing the weight of the features. The new
approach has been validated on a synthetic dataset and shows
improvements compared with the state-of-the-art PCA.

Index Terms—feature extraction, overlapping clusters, multi-
modal distributions, Jensen-Shannon divergence, Machine Learn-
ing, Spike Sorting

I. INTRODUCTION

An action potential or spike is an electrical signal dis-
charged by a neuron when an external impulse occurs. Spike
Sorting refers to grouping action potentials into clusters based
on the similarity of their characteristics, aiming to match each
cluster to a firing neuron. Each neuron has a particular firing
pattern and produces spikes similar in shape. The shape and
width of a spike is affected by the configuration of its dendritic
tree, by the activation-deactivation kinetics of the voltage-
dependent channels of sodium, potassium and calcium and
by the influx-outflux and movements of the ions through the
neural cell [1].

Usually, data is collected extracellularly by implanting tiny
electrodes into the brain tissue and recording the activity of a
population of neurons from a certain part of the brain and at
a specific time.

Therefore, an accurate labeling of spikes would be essential
for neuroscientists to study the activity of individual popula-
tions of neurons and better understand specific brain processes.

One of the greatest challenges of neural data is the problem
of overlapping clusters, which arises because of spikes similar
in shape but produced by different neurons or because of
recording issues such as electrode drift.

The performance of the clustering is highly dependent
on the quality of the data. Due to overlapping clusters, the
clustering algorithm has difficulties in assigning a spike from
an overlapping region to a cluster. Therefore, our aim is
to overcome this challenge by increasing the separability
between clusters in the feature extraction step.

The rest of the paper is organised as follows: section II
presents related work and state-of-the-art methods of feature
extraction. In section III is described the proposed solution.
Section IV presents the dataset used and covers the validation
of the feature extraction approach. The conclusions, limitations
of the presented method and future improvements that can be
made are discussed is section V.

II. RELATED WORK

Feature extraction is defined as modifying the geometry of
the feature space by creating new discriminant features based
on a combination of the original ones.

A. Principal Component Analysis

Principal Component Analysis or PCA [2] is an unsuper-
vised, linear method of feature extraction which finds an
appropriate change of vector basis by performing a linear
combination, a weighted sum of the original features, with
the aim to maximize the variance and minimize the correlation
between the principal components. The principal components
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represent the reprojected original data points an a new or-
thonormal vector basis. The vectors which form the new
basis are the eigenvectors of the covariance matrix and they
are ordered by their magnitudes, referred to as eigenvalues.
As mentioned, PCA takes into consideration the variance
of features and sometimes variance is not a strong enough
criterion to impose a separation between clusters.

B. t-distributed Stochastic Neighbor Embedding

t-distributed stochastic neighbor embedding or shortly, t-
SNE [3] is a nonlinear method of dimensionality reduction.
The algorithm performs a mapping from a high-dimensional
space to a low-dimensional space that retains most of the
relevant information. The idea of this algorithm is to convert
the high-dimensional Euclidean distances between data points
into conditional probabilities that correspond to their similari-
ties. Therefore, t-SNE constructs a probability distribution for
the high-dimensional samples and tries to approximate it with
another similar probability distribution of the points in the low-
dimensional space. This is achieved by minimizing the sum
of Kullback-Leibler divergences over all data points using a
gradient descent method.

Because it is used mostly as a visualization method and
does not create new data that can be used by the clustering
algorithm it could not be used as a feature extraction method
in this work.

III. A NEW APPROACH OF FEATURE EXTRACTION

The proposed solution offers a larger bias, a weight in
the linear combination performed by PCA to those features
that are prone to bring more valuable information in order to
increase the separability between clusters.

Regarding the data format, each spike waveform is de-
scribed by a number of values and can also be viewed as a
point in a D dimensional space, where D represents the number
of values. The feature space was reduced to 2 due to the fact
that the first 2 principal components retain the most variance.
As aforementioned, PCA does not overcome the overlapping
clusters problem by considering the variance, therefore, other
characteristics of features have to be considered.

A. Multimodal distributions

Exploratory analysis of features’ distributions is essential
in order to understand the nature of data and draw insights
regarding its structure. The probability distributions of features
can be unimodal or multimodal, the latter one presenting
more modes which appear as local maxima or peaks in the
probability density function.

The clusters follow a Gaussian distribution, therefore, each
mode of a multimodal distribution can represent the centroid
of a cluster. The multimodal distributions can be seen as a
mixture of Gaussian distributions where each Gaussian repre-
sents a cluster. A more accurate definition of the Gaussians in
the mixture results in a better separation between clusters.

The main characteristic of a multimodal distribution is the
number of peaks which was computed using the histogram.

The most important parameter of the histogram is the number
of bins. Finding the optimal number of bins is a crucial step
because different numbers of bins can lead to very different
results that have divergent interpretations about the nature
of the data. A reduced number of bins, implies increased
wideness (a bimodal distribution may appear as unimodal),
while a higher number of bins may introduce a lot of noise
and also, hide essential information about the underlying data.
Thus, Freedman-Diaconis’ method was chosen to compute the
optimal bin size [4].

The number of peaks was computed by performing a
comparison with the neighboring values. When identifying the
peaks, some parameters have to be considered such as distance,
width or prominence. By far the most important parameter is
the prominence which represents how much a peak protrudes
from the signal. The approach of computing the prominence
of a point p1 consists in tracing first a horizontal line through
p1 until the border of the window or another point located on
the curve is intersected. Denote the intersection from the left
with p2 and from the right with p3. Consider the point m to be
the minimum value on the y axis of the interval defined by p2
and p3. The difference between the y coordinate of p1 and m
represents the prominence. An illustration of prominence can
be observed in Fig. 3 from Appendix. The value chosen for
this parameter was selected empirically to be 50 by performing
multiple experiments.

The importance of a feature is directly proportional with
the number of peaks. Therefore, it is quantified with a weight
based on this criteria. The weighting coefficient is computed
relative to the whole set of features. The weighing formula
for one feature was designed to be the division between the
number of peaks of that feature and the maximum number of
peaks presented by a feature from the dataset.

wp(i) =
peaksi

max
1≤j≤N

(peaksj)
(1)

B. Distance between probability distributions

Regarding the relationship between two probability distri-
butions, a well-known concept from information theory is
Kullback-Leibler divergence [5]. It represents the statistical
distance between two statistical objects quantifying how much
they differ. When considering two probability distributions, it
quantifies how much a distribution diverges from another ref-
erence distribution. KL divergence is also referred as relative
entropy. KL divergence between two probability distributions
P and Q is defined by (2).

The entropy [6] represents the uncertainty regarding a
variable’s possible outcomes. The entropy of a random
variable X is defined by (3). The intuition behind the
logarithm function is that the surprise increases as a less
probable event happens. Therefore, the logarithm of a
probability equal to 1 is 0, because there is no uncertainty.

Cross Entropy = Entropy + Kullback-Leibler divergence



DKL(P ||Q) =

n∑
i=1

P (xi) log2
P (xi)

Q(xi)
(2)

H(X) = −
n∑

i=1

P (xi) log2 P (xi) (3)

A higher score implies a larger distance between the prob-
ability distributions.

Jensen-Shannon divergence [7] is the normalized and sym-
metrical version of KL divergence. Therefore, JS divergence
was chosen over KL divergence.

The formula below (4) defines the JS divergence between
two probability distributions P and Q:

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M) (4)

M =
1

2
(P +Q) (5)

To approximate the probability density functions (pdf) of
features and compute the probability distributions, a kernel
density estimation approach was used. Kernel density estima-
tion or KDE is a more robust reflection of the actual data
properties than the histogram. The parameters that describe a
kernel density estimation are the kernel type and the kernel
bandwidth. The kernel specifies the shape of the distribution
placed at each point. Intuitively, it smoothes each data point
into a small density bump and by computing the sum of all
these bumps, the final density estimation is obtained [8]. The
kernel type used is the Gaussian kernel.

The kernel bandwidth controls the size of the kernel at each
point. Similar to the number of bins of a histogram, it has
to be very carefully chosen in order not to misinterpret the
underlying structure of data. A suitable method for finding
the optimal bandwidth is to use a grid search cross-validation
approach.

Regarding the implementation details, after obtaining the
probability distributions, the Jensen-Shannon divergence ma-
trix of size (N ×N ) was computed. N represents the number
of features.

The Jensen-Shannon divergence score, the weight assigned
to one feature was calculated as the average of all divergence
scores between it and all the other features:

wJS(i) =

∑N
j=1DJS(Pi||Pj)

N
(6)

where i represents the index of the feature of interest and Pi

and Pj the probability distributions of features with indexes i
and j.

C. Solution overview

As stated in the introduction, the new approach of feature
extraction is based on PCA. A good practice before applying
PCA is to center the data to zero. This operation is done by
subtracting the mean of every feature from the data points.

Another preprocessing step which is generally indicated is
feature scaling or standardization. After some experiments,
we have concluded that in the context of Spike Sorting,
standardizing the data is not useful because the variability of
features matters and by standardizing the data each feature
receives equal importance while our objective is to grant a
higher weight to the important features.

The goal of increasing the separability between clusters is
achieved by maximizing the contribution of multimodal and
distant features’ distributions. The total weighting formula for
a feature (7) is designed as the product between the weight
computed using the peak criteria (1) and the one using the
divergence information (6).

w(i) = wp(i) ∗ wJS(i) (7)

Increasing the variance of the multimodal and distant fea-
tures means modifying their contribution in the computation
of new axes calculated by PCA. The correlation between the
original features and the principal components can be assessed
by computing the correlation coefficient [9] defined below:

rik =

√
e2ikλk
σi

(8)

Regarding the parameters, i represents the feature index and
k the principal component index. The eigenvector value (eik)
multiplied by its eigenvalue (λk) is also known as loading and
in case the data is not normalized, it has to be divided by the
standard deviation of the original feature (σi).

IV. EVALUATION

A. Dataset

The data used in this work was created by a research
group from the Department of Engineering of the University
of Leicester, United Kingdom [10]. The data consists of 95
synthetic datasets, also referred to as simulations, having be-
tween 2 and 20 clusters. To replicate a real scenario, a cluster
representing the multi-unit cluster representing the noise, is
present in each simulation. The other clusters represent the
activity of a single-unit, consisting in spikes generated by
a particular neuron. Both single-unit and multi-unit clusters
were generated by using a database of 594 different spikes
collected from recordings of a monkey neocortex and basal
ganglia. Compared to a realistic scenario, the synthetic dataset
contains ground truth, allowing a performance measurement
using external clustering validation methods.

Originally, each waveform was sampled at 96 KHz, fol-
lowed by a downsampling to 24 KHz. A sampling frequency
of 96 KHz corresponds to 316 datapoints. Therefore, after
downsampling, a spike waveform is described by 79 data



points, representing the magnitude, the voltage expressed in
mV.

Preprocessing the data consists in aligning the spikes to
their maximum value, to their peaks. This step is performed
in order to avoid overclustering (separating a cluster into more
clusters) as presented in [11].

B. Clustering validation metrics

The results were measured using both external [12] and
internal validation metrics [13].

Regarding the external validation the labels returned by
the clustering algorithm were compared against the labels
from ground truth. External methods can be categorised as
pair-counting measures such as Adjusted Rand-Index, infor-
mation theory based measures including Adjusted Mutual
Information and Variation of Information and set-matching
based measures, such as H criterion [12].

Rand-Index (RI) measures the agreements between pairs
of points of two clusterings. It is defined at (9) where N00

represents the number of agreements and N11 the number of
disagreements between the two partitionings. The denominator
represents the total number of pairs.

RI =
N00 +N11(

n
2

) (9)

Mutual Information (MI) is a symmetric measure that
quantifies the similarity, the information shared by two random
variables. It is based on entropy and measures how much
knowing one variable reduces the uncertainty about the other.
In the clustering context, the random variable is represented
by a cluster. Below (10) is presented the mutual information
between two variables X and Y using Shannon entropy (3).

MI(Y,X) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(y, x)

p(x)p(y)
(10)

The corrected-for-chance versions of Rand Index and
Mutual Information are recommended because of the constant
baseline property which improves the interpretability of re-
sults [14]. Both methods Adjusted Rand Index (ARI) and Ad-
justed Mutual Information (AMI) are normalized and upper-
bounded by 1, meaning perfect matching and lower-bounded
by -1. A score equal to 0 suggests a random clustering.

Internal validation is used when ground truth is not available
and it is based on two criteria: compactness and separation.
The goal of a clustering is to group similar objects in the
same clusters and separate the unrelated ones. Therefore,
compactness describes how related the points from a cluster
are. It is usually measured using the variance (low variance
suggests better compactness) or by computing the maximum
pairwise distances. Separation measures how well-defined are
the clustering partitions. It can be calculated either by using
density or by computing the pairwise distances between the
cluster’s centers.

Silhouette (S) score measures the clustering performance
using the pairwise difference of the within-cluster distances
and the distances to the nearest cluster. The formula for
computing it for a point is presented below (11): a parameter
represents the average distance between a point and the other
points from the same cluster and b denotes the average
distance between that point and all the points from the nearest
cluster.

S =
b− a

max(a, b)
∈ [−1, 1] (11)

The overall Silhouette coefficient is computed by averaging
the scores of each point. It takes values in the range [-1, 1]
and a result of 0 denotes overlapping clusters. An optimal
clustering is obtained by maximizing the value of this score.

Calinski-Harabasz (CH) score measures the clustering per-
formance by computing the ratio of the average of the inter
and intra cluster dispersion defined as the sum of squares. The
index measures compactness using the sum of the distances
between the points and the cluster’s center and separation
using the maximum distance between the centers of all clus-
ters [13]. It takes positive values and is unbounded. A larger
score suggests a good clustering considering that the distances
between clusters have to be larger and the within-distances
have to be lower for an optimal result.

Davies-Bouldin (DB) index is computed as the average of
the maximum similarity between clusters (13). A lower value
indicates better separation between clusters. The similarity is
defined as Rij by (12) where si denotes the average distance
between each point of cluster i and the centroid of that cluster
(same meaning for sj) and dij represents the distance between
the centroids i and j.

Rij =
si + sj
dij

(12)

DB =
1

k

k∑
i=1

max
i6=j

Rij (13)

C. Results

The evaluation was performed on 37 simulations, 28 simu-
lations having up to 8 clusters and the rest having 9, 10, 11,
12, 15, 16, 17 and 19 clusters.

The performance of the feature extraction method was first
evaluated using the internal validation metrics (Silhouette,
Davies-Bouldin and Calinski-Harabasz) directly on the ground
truth in order to avoid the bias introduced by the clustering
algorithm.

The table below presents the average difference (Avg
Delta) between the results of the weighting method and
classical PCA 2D applied on the ground truth labeled data
in order to observe the performance of the feature extraction
method avoiding the bias introduced by a clustering algorithm.
The first row presents the results using the simulations that



have less than 8 clusters and the second row presents the
results obtained on the subset of 37 simulations.

Increased attention was paid to Silhouette score because it
is more interpretable being normalized.

TABLE I
INTERNAL VALIDATION SCORES ON GROUND TRUTH

Avg Delta S Avg Delta DB Avg Delta CH
≤ 8 clusters simulations 0.098 0.048 5598.454

all tested simulations 0.07 0.131 4382.249

The performance was assessed also from the graphical
representations of data. In Fig. 1, are presented the data
points of simulation 8 after using classical PCA 2D as feature
extraction, in the left and after applying weighting on features
then PCA 2D, in the right. From these figures, it can be
observed that the separability between the overlapping white
and red clusters is increased.

Fig. 1. Simulation 8 after applying PCA 2D (up) and after applying Weighted
PCA 2D (down)

Another simulation that shows a better performance than
PCA 2D is simulation 46, illustrated in Fig. 2.

The new approach of feature extraction was validated also
after applying the clustering algorithms: K-Means–partitioning

Fig. 2. Simulation 46 after applying PCA 2D (up) and after applying
Weighted PCA 2D (down)

based and Space Breakdown Method (SBM)–density based
algorithm [15]. The latter one was developed especially for
neural data challenges. The evaluation was performed us-
ing both internal (Silhouette, Davies-Bouldin and Calinski-
Harabasz) and external clustering metrics (Adjusted Rand In-
dex and Adjusted Mutual Information). Regarding the external
validation, the authors of SBM [15] propose an evaluation
without considering the noise points (nnp setting) left by the
algorithm as belonging to no cluster.

The tables below present the average differences between
the weighting method and PCA 2D on which the two
clustering algorithms were applied. It can be observed that
the weighting method presents an increase in scores no matter
the clustering method. Between the 2 clustering algorithms,
SBM performs better [15].

TABLE II
EXTERNAL VALIDATION SCORES FOR CLUSTERING ALGORITHMS

Avg Delta Avg Delta Avg Delta Avg Delta
ARI AMI ARI-nnp AMI-nnp

K-Means 0.044 0.025 0.044 0.025
SBM 0.087 0.061 0.089 0.069



TABLE III
INTERNAL VALIDATION SCORES FOR CLUSTERING ALGORITHMS

Avg Delta S Avg Delta DB Avg Delta CH
K-Means 0.005 -0.004 7284.433

SBM 0.054 -0.17 2773.211

V. DISCUSSION AND CONCLUSIONS

According to the results presented in the previous sec-
tion, the new approach of feature extraction achieves better
performance in average than classical PCA, the increase in
separability between clusters being visible also in Fig. 1
and Fig. 2. Better results are obtained for simulations with
less than 8 clusters, but besides the number of clusters, the
exposed complexities matter too. The variance percentage of
the first two principal components is increased by using the
new approach.

The method presented in this work can be improved by
taking into consideration other characteristics of a multimodal
distribution. Another future improvement would be to apply
the idea of multimodality using Wavelets [16] or combine the
feature extraction method with other feature extraction meth-
ods from frequency domain: Fourier or Hilbert. Improvement
is welcomed also in the clustering step, focusing on algorithms
that can benefit from the new feature extraction approach. Last
but not least, the complexity of the clustering problem highly
depends on the particularities and challenges presented by the
dataset. As aforementioned, the presented approach was based
on a synthetic dataset, while a real dataset would increase the
complexity, as more challenges are present and the ground
truth is not available.
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