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Abstract— Spike sorting is a technique in the field of 

neuroscience applied to identify and classify the action 

potentials (spikes) of neurons in extracellular recordings. This 

method is important considering that the simultaneous activity 

of several neurons can be recorded through the use of electrodes, 

but the recorded signals are often mixed. Extracting the 

characteristics of individual spikes provides valuable 

information about the identity of neurons that generate them, 

the type of cells involved (inhibitory/excitatory), encoding of 

information in spike rates or spike times, and so on. Therefore, 

unmixing the spikes recorded on an electrode via spike sorting 

is crucial. Here, we apply a novel method to extract features of 

mixed spikes, namely the Superlet transform, which enables the 

computation of spectral characteristics with a higher resolution. 

We use machine learning to determine which features of the 

Superlet spectrum contain the most information about the 

shapes of individual spikes, thereby enabling their unmixing 

during spike sorting. 

Keywords—spike sorting, superlet, bicubic interpolation, 
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network 

I. INTRODUCTION  

Spike sorting [1] is the process of identifying and 
classifying neuronal discharges, also called spikes, recorded 
as electrical signals, aiming to assign each spike to a specific 
source neuron. This technique provides important 
information that facilitates the subsequent analysis of 
neuronal activity. By following the spikes recorded over time, 
one can observe details about the response of neurons to 
stimuli, the coding of information, the synchronization of 
neuronal activity, but also other important 
neurophysiological processes. Furthermore, the sorting of 
spikes allows the collection and analysis of the data necessary 
for constructing and validating neural network models. These 
models help to understand and to predict the behaviour of 
neural networks in various experimental conditions. 

Previous work [2] has demonstrated that the Superlet 
Transform is an improvement compared to state-of-the-art 
feature extraction methods in terms of the separability of 
clusters in the spike sorting process. Therefore, here we aim 
to identify which are the most important features of the 
spectrogram, obtained by applying the Superlet Transform, 
that enable good separability of different clusters of spikes. 

II. THEORETICAL FOUNDATIONS 

A. Challenges 

Neuronal spikes are the main way neurons transmit and 
encode information in the nervous system. They are used to 
communicate with other neurons and transmit signals between 
different brain areas. Therefore, the analysis and recording of 
neuronal spikes are essential methods in neuroscience to 
understand neuronal behaviour and brain function. 

In extracellularly recorded neuronal data, a cluster consists 
of several spikes having similar characteristics and coming 
from the same neuronal source. The structure of the clustering 
space depends critically on the features that are extracted from 
spikes and used for the clustering. Most feature extraction 
algorithms do not ensure perfect separability between data 
classes. In general, feature extraction algorithms are designed 
to shift the raw data into a new feature space, even a reduced 
space, while preserving as much information as possible, but 
there is no guarantee that these features will offer perfect 
separability. Class separability is an important factor in the 
classification and the clustering of data after feature 
extraction. Even if the extracted features are not perfectly 
separable, a powerful classification algorithm might still be 
able to distinguish between classes and achieve good 
performance. 

The Superlet transform [3] has shown that it can provide 
improved cluster separability in the spike sorting process 
compared to classical feature extraction methods [2]. The 
Superlet transform provides a frequency resolution adapted to 
the signal characteristics and allows precise time-frequency 
localization of spikes, which means that it can better identify 
and separate the spikes in the time-frequency space. 

To understand why the Superlet transform enables better 
feature separability, we used real datasets recorded from the 
brain of adult mice under anaesthesia through ‘in vivo’ 
electrophysiology. Datasets contain the activity of neurons in 
response to different stimuli captured with electrodes 
implanted in visual cortex. For the datasets used in this study, 
32-linear probes (Cambridge NeuroTech) were employed, and 
neuronal activity was recorded at 32 kSamples/s (Multi 
Channel Systems MCS GmbH). Each electrode has a slightly 
different location once inserted into the brain, thus each 
channel contains a varying number of spikes as each has 



 

 

captured the activity of different neurons from its vicinity. 
Furthermore, the data has been manually spike sorted by an 
expert in order to provide a ‘ground truth’ through which 
classification and comparisons can be made. 

B. Superlet 

The Superlet transform [3], initially developed for the 
analysis of brain signals, relies on multiple Wavelet 
transforms to compute a representation of signals in the time-
frequency domain. 

In the process of spike sorting [1], the Superlet transform 
has been used in the stages of extracting the characteristics of 
the action potentials, or spikes [2]. After applying the 
transform, several characteristics can be extracted, such as the 
time-frequency span and magnitude or power. 

The formula of the Superlet Transform [4] is: 
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where x represents the signal, o represents the order of the 
Superlet, c1 is the number of cycles of the base Wavelet [4], t 
represents time and f represents frequency. The CWT stands 
for Continuous Wavelet Transform. 

Therefore, the Superlet method is a spectral estimator 
useful for signal processing, which combines characteristics 
of short and wide wavelets to isolate processes in the time-
frequency domain. 

C. Bicubic interpolation 

Bicubic interpolation [5] is used to estimate values 
between neighbouring data points in a two-dimensional 
representation, using a cubic function. Thus, the time-
frequency representations resampled using the bicubic 
interpolation technique will have a uniform and continuous 
resolution. This resampling can be beneficial for certain 
applications, such as feature extraction. It also facilitates data 
alignment in a common format to perform quantitative and 
qualitative analyses on the recorded signals. 

For a coordinate matrix (N, 0) x (0, N), the formula for its 
interpolated surface is: 
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where the parameters x and y are the coordinates of the point 
of interest, while ���  is the applied interpolation factor [6]. 

D. Feature permutation 

Feature permutation is a technique that can be used to 
evaluate the importance of features in classification. This 
involves disturbing certain features of the data that will be 
used to train a classifier and evaluating the performance of 
the classifier [4] with the help of performance metrics, such 
as Accuracy, or the F1 Score. The drop in performance when 
a feature is perturbed will indicate the amount of information 
that the classifier is able to learn through that feature. The 
permutation process involves reorganizing all the values of a 
characteristic of the data across all samples, such that no 
value corresponds to its own sample. If the feature is 
important for classification, the permutation is expected to 
lead to the performance degradation of the classifier. A 
limitation of this method is marked by the fact that the 
disturbance of a feature may not affect the performance of the 

classifier if other features are strongly correlated with it, 
because a compensation phenomenon occurs. 

Thus, the permutation of features allows the identification 
of important features for classification and should generally 
lead to a decrease in performance, but there may be cases 
where performance increases or remains largely unaffected. 
To tackle this issue, we compute the sets of correlated 
features and perturb them together, to avoid performance 
compensation (see below). 

III. SOLUTION 

In carrying out the proposed method of identifying the 
most important features areas for the learning of the model 
through the perturbation of characteristics, the steps of the 
proposed method are shown in Figure 1. 

 

 
Figure 1. The flow of the correlated feature set perturbation 

method. 

The first step of the proposed pipeline is the computation 
of the Superlet spectrum for each spike. Downsampling of the 
spectra, through a bicubic interpolation, is then applied to 
reduce the dimensionality and to reduce the computation 
time, but the steps of the pipeline are viable even without the 
bicubic interpolation. As the perturbation of a single feature 
may not be enough due to the compensation provided by 
correlated features in the training process, we chose to instead 
perturb all correlated features together. Therefore, the next 
step of the pipeline is to find the sets of features that are 
correlated above a certain threshold. This is accomplished 
through the processing of the correlation matrix. Once the 
correlated feature sets have been extracted the comparison 
can commence. An instance of the neural network is first 
trained on the unperturbed features. Next, each individual set 
of correlated features is perturbed, and a neural network of 
the same architecture is trained on the modified dataset that 
contains the perturbation of a single feature set. Through the 
difference in performance of the neural networks trained on 
the unperturbed and perturbed dataset, the impact in learning 
of the feature set is obtained. The following subsections 
provide a detailed description of these steps.  



 

 

 

A. The time-frequency spectrum 

As the input of the classifier (neural network model) is the 
spectrogram obtained by applying the Superlet Transform, it 
is the characteristics of the spectrogram that will be 
perturbed. 

Figure 2 shows the time-frequency spectrum of three 
average spike waveforms using the Superlet method (with 
order o=2, and the number of cycles c1=1.5) on a set of real 
data. At the top of each figure, the average spike from each 
cluster can be seen measured in mV, and at the bottom we 
show the representation in the time-frequency space of the 
spike. The classical frequency interval of spikes is the 300-
3000Hz range [1], we have chosen to use the 300-7000Hz 
range as the original range would cut off the spectral 
representation of the spike.  

 
Figure 2. Average spikes and their corresponding spectrograms for 

3 different clusters (neurons) of a single channel of real data. 

B. Bicubic interpolation and the correlation matrix 

Our initial step was to resize the spectrogram matrix from 
the initial size of [58, 50] to a size of [14, 12]; thus, obtaining 
a total of 168 features. This process of rescale is achieved 
through bicubic interpolation as shown by Figure 3.  

 
Figure 3. Example of bicubic interpolation for downsampling the 

spectrograms of spikes. 

To graphically visualize how strongly the characteristics 
of the action potentials are correlated, we calculated the 
correlation matrix, which shows how all possible pairs of 
values are closely related to each other for a certain feature 
correlation threshold. It is important to specify that the 
correlation coefficient varies between [-1, 1], where -1 

indicates a perfect negative correlation, 1 indicates a perfect 
positive correlation, and 0 indicates the absence of a 
correlation between the coefficients [7]. 

Figure 4 shows the correlation matrix, from which we can 
observe the correlations between features represented 
visually through a heat map, in which the red colour is 
intended for very high values, and the blue one for low 
values. 

 
Figure 4. An example of a correlation matrix obtained from real 
data after the downsampling of spectrograms through bicubic 

interpolation. 

Another step using the bicubic interpolation is taken at the 
end, where the spectrogram matrix is upscaled from the 
dimension of [14, 12] to the initial dimension [58, 50], to 
return to the original dimension. This is shown in Figure 5. 
 

 
Figure 5. Example of bicubic interpolation for upsampling on the 

drop in performance for each feature set. 

C. Feature permutation 

One of the most important steps is the feature perturbation 
method. To analyse how much each feature set matters in 
learning, we perturbed each feature set in several ways. We 
chose to disturb the feature sets 10, 20, and respectively 50 
times, applying different threshold values, that define what a 
“correlated set” is. Each feature set contains those features 
that have a correlation greater than or equal to a certain 
threshold, and the threshold refers to a value used to decide 
whether two features are considered correlated or not. After 
a thorough analysis of the three cases, we noticed significant 
differences between them. Permuting the features of the 
spikes 50 times rather than 10 or 20 times, leads to a more 
stable statistical estimation of the effect of perturbation. 
Additionally, the more extensive perturbation can help 
identify features with a greater contribution to correct 
classification, helping in the elimination of irrelevant 
features. 

To observe the impact of the perturbation method on the 
characteristics of the spikes, we made a plot bar from which 
we can deduce the difference in the accuracy metric values 
between each original and perturbed set. This is shown in 
Figure 6. Thus, from the analyses made, we noticed that, in 



 

 

most cases, by disturbing the data, the value of accuracy 
decreases. Evidently, the greater the decrease in accuracy on 
the original set compared to the disturbed one, the higher the 
contribution to learning of that set of characteristics.  

 
Figure 6. The difference in results between the original set and the 
perturbed set when applying the Accuracy performance metric for 

spikes recorded on a single channel in real data (channel 6), using a 
threshold of 0.5. 

D. Neural network 

To identify the most important characteristics of spikes in 
automatic learning, they must be used in the training of a 
classifier. Here, we used a neural network that features an 
input layer, a hidden layer with the ReLU activation function, 
and an output layer with the Softmax activation function. The 
input layer [8] has the role of receiving the input values of 
each data set, the number of neurons being determined by the 
size of a sample of the input data. Regarding the output layer 
[8], it produces the final result of the neural network, both for 
the original set of features and for the disturbed one, and the 
activation function returns a vector with the length equal to 
the number of classes in the [0,1] interval and ensures that the 
sum of probabilities of all classes is 1. The number of classes 
for a certain data channel is equal to the number of individual 
neurons observed on the channel and separated during 
manual spike sorting in order to obtain the ground truth. 

The metrics used to evaluate the performance of the 
classification model are accuracy and F1 score. Accuracy 
represents a measure of the correct proportion of predictions 
out of the total number of predictions, calculated by dividing 
the number of correct predictions by the total number of test 
examples. Instead, the F1 Score is a measure of the balance 
between the precision and recall of a model, being calculated 
based on these two metrics. 

From Figure 7 and Figure 8, in which we applied the 
accuracy and F1 score performance metrics, we can see that 
in the first case, we obtain a maximum drop in performance 
of 3% while in the second case 9%. This implies that, at least 
in certain situations, the F1 Score is a more robust and 
informative metric than Accuracy. 

 
Figure 7. Drop in Accuracy for spikes recorded on a single 

channel, namely channel 6, from a real dataset, when different 
time-frequency regions are perturbed. Larger values indicate a 

larger drop in performance, hence more importance of the 
respective features. 

 
Figure 8. Drop in the F1 score for spikes recorded on channel 
single channel, namely channel 6, from a real dataset, when 

different time-frequency regions are perturbed. Larger values 
indicate a larger drop in performance. 

E. Superlet parameters 

The Superlet Transform has several parameters that may 
affect performance. Choosing these parameters was done by 
testing various combinations and comparing results. Thus, we 
made a comparison between the following parameters: 
Superlet of order 1 (Wavelet), Superlet of order 2, 
respectively Superlet of order 5 shown in Figures 9, 10, and 
11 respectively on the same real dataset. 

Considering these graphical representations, we found 
that the Wavelet has a good temporal resolution, but the 2nd-
order Superlet offers the best precision across multiple areas 
such as low frequencies, high frequencies, and transient 
frequencies in time. 
 

 
Figure 9. The average spike per cluster and the time-frequency 

spectrum for Superlet of order 1 (wavelet) and number of cycles 
1.5 on real data. 



 

 

 
Figure 10. The average spike per cluster and the time-frequency 

spectrum for Superlet of order 2 and number of cycles 1.5 on real 
data. 

 
 

 
Figure 11. The average spike per cluster and the time-frequency 

spectrum for Superlet of order 5 and the number of cycles 3 on real 
data. 

From the analyses carried out, it can be easily inferred that 
the Superlet of order 5, compared to the Wavelet or Superlet 
of order 2, has a decrease in precision over time, but at the 
same time, an increase in precision for the frequency domain. 
In comparison, the Wavelet has a good temporal precision but 
loses its precision in frequency. Thus, the best precision in 
both time and frequency is offered by the Superlet of order 2. 
This is easily visualized in Figure 12 where the drop in 
performance is shown for the Superlet of order 1 on the top-
left, of order 2 on the top-right and of order 5 on the bottom 
regarding the F1 Score. 

 

 
Figure 12. Drop in the F1 Score for spikes recorded on channel 17, 
for Superlet of order 1 (top-left), of order 2 (top-right) and of order 

5 (bottom). 

IV. RESULTS 

From the obtained graphic representations, we created a 
series of tables to have a better comparative perspective on 
the results obtained, according to certain criteria. 

A. Evaluation of the performance of the characteristics 

depending on the threshold 

From the comparative analysis we performed in Table I, 
we can note that when we identify the correlation sets, 
applying a threshold of 0.3, we obtain a higher performance 
than in the other cases. This is because the lower the threshold 
value, the larger the correlated feature sets. 

 
Table I. Comparative analysis of the difference in performance 

when training on the original and perturbed sets depending on the 
performance metric and correlation threshold applied to 3 channels 

on real data. 

CHANNEL 

ACCURACY F1 SCORE 

thr = 

0.3 

thr = 

0.5 

thr = 

0.8 

thr = 

0.3 

thr = 

0.5 

thr = 

0.8 

1 30% 15% 6% 20% 15% 8% 

8 6% 1.5% 2% 12.5% 6% 8% 

17 40% 8% 6% 25% 7% 5% 

 
Another aspect that emerges from the analysis is that the 

Accuracy performance metric is not always the best solution 
to determine how important a feature set is. Regarding the 
values obtained for electrode 8, a big difference can be 
observed between the results of the 2 metrics, the F1 score 
having better statistics than accuracy regarding the 
performance in learning the characteristics of action 
potentials. 

 

B. Analysis of the Superlet with different order  

Following the results obtained from Table II, comparing 
the prediction values for the three orders and applying a 
threshold of 0.5, a significant difference can be identified. 
Thus, for the Superlet of order 5, with regard to the values of 
the two metrics, they are lower than the Superlet of order 1, 
respectively 2. This demonstrates the fact that, although the 
Superlet of order 5 offers a better resolution in the frequency 



 

 

domain, the temporal characteristics of the spikes play a 
crucial role in the process of spike sorting. 
 

Table II. Comparative analysis of the difference in performance 
when training on the original and perturbed sets depending on the 

performance metric, correlation threshold (THR), and Superlet 
parameters (ORD, NCYC) on real data. 

CHANNEL THR ORD NCYC ACCURACY F1 

SCORE 

 
 
 

17 

0.3 1 1.5 30% 25% 

0.5 1 1.5 17.5% 20% 

0.3 2 1.5 40% 25% 

0.5 2 1.5 8% 7% 

0.3 5 3 25% 15% 

0.5 5 3 3% 1.5% 

C. Ethical Statement 

The experiments conducted in this study strictly adhered 
to the ethical guidelines and regulations set forth by the 
European Communities Council Directive 86/609/EEC, as 
well as the directive 2010/63/EU of the European Parliament 
and Romanian Law 43/2014. These provide guidelines for the 
protection and ethical treatment of animals used in scientific 
research. 

The experimental procedures and protocols were reviewed 
and approved by the Local Ethics Committee, with the 
approval number 3/CE/02.11.2018, and the National Sanitary 
and Veterinary Authority, with the approval number 
ANSVSA 147/04.12.2018. The experiments were conducted 
in accordance with the ethical guidelines outlined in the 
European directive, as well as the guidelines set by the Society 
for Neuroscience and the Romanian laws for the protection of 
animals. 

To minimize the number of animals used and ensure their 
welfare, multiple datasets were collected over a period of 4 to 
8 hours from each animal. This approach reflects a 
commitment to reducing the number of animals required for 
experimentation while still obtaining reliable and meaningful 
data. 

V. CONCLUSION 

In comparison with the Wavelet, respectively with the 
Superlet of order 5, it was proven that the Superlet transform 
of order 2, and the number of cycles 1.5, achieves a better 
performance regarding spike sorting. This aspect is due to the 
consideration that the 5th order transform loses its temporal 
precision, compared to the Wavelet and the 2nd order 
superlet. The latter seems to offer a sufficient precision both 
in time and frequency to enable a reliable identification of 
spikes.  

Regarding the data permutation, we found that choosing 
a lower correlation threshold produces a larger difference in 
performance, while higher thresholds will result in a smaller 
difference in performance. This happens because a higher 
correlation threshold, on average, will lead to the formation 
of smaller feature sets and thus, their perturbation will have a 
smaller impact on performance. 

The most important conclusion however pertains to the 
reason why the Superlet transform offers better separability 
of spike clusters, enabling a classifier to correctly trace the 

individual spikes to the neurons that generate them. In 
particular, both the frequency and temporal information help 
segregating different spike shapes. As figures 7, 8 and 12 
indicate, information about spike characteristics is localized 
predominantly around the spike peak, extending upwards in 
frequency, and around a lower frequency component that 
carries a large fraction of the energy of the spike. 
Perturbations of this area have the most impact on the 
learning performance, indicating its relevance to the 
separability between the activity of different neurons. On the 
other hand, the amplitude peak of spikes and the temporal 
width of this peak also seems to be very informative. Indeed, 
spikes of excitatory neurons are usually wider and larger than 
spikes that arise in inhibitory neurons [9]. 

To conclude, we have explored why the Superlet 
transform provides useful features for spike sorting. We 
showed that it is able to isolate important time and frequency 
components that enable distinguishing spikes of different 
neurons from one another. 
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