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Abstract— Neurons in the brain fire action potentials or 

spikes to encode information and communicate with each other. 

The firing can be in tonic mode, where individual spikes are 

emitted at relatively distant time intervals, and in burst mode, 

where neurons typically fire trains of spikes in short temporal 

succession. Functionally, neuronal bursts may be involved in 

reliable information transmission or specialized information 

encoding schemes. Understanding the dynamics of neuronal 

burst activity plays a crucial role in unravelling the complex 

mechanisms underlying neural information processing. 

However, detecting bursts in extracellularly recorded neural 

data is far from trivial. There are many methods for burst 

detection, but none was adopted universally, and they are based 

exclusively on the evaluation of spike times. This article aims to 

compare these burst detection algorithms against each other 

from several perspectives in order to establish the most suitable 

and robust one. Moreover, we propose a novel burst detection 

method considering additional features that contain as much 

information as possible from the recording. 
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I. INTRODUCTION  

A. The detection of bursts 

There are multiple approaches for burst detection, but 
none of them have been fully adopted in the field. This is 
believed to be due to the fact that many algorithms require 
the adjustment of multiple parameters and additional criteria 
to produce satisfactory results. 

Some of the considered methods are: ISIn [1], ISI Rank 
threshold [2], Max Interval [3], Cumulative Moving Average 
[4], Rank Surprise [5], and Poisson Surprise [6]. These 
methods only utilize the timestamps at which action 
potentials occur, resulting in a loss of valuable information 
contained in the signal. Our goal was to develop a method 
that considers the criteria of burst characteristics established 
in the literature while also exploiting as much information as 
possible that is available in the recording. By considering 
additional features, we aim to increase the performance of 
distinguishing between bursts and superposed action 
potentials.  

The main challenge lies in distinguishing between action 
potentials close in time originating from different neurons 
(also known as superposition in cases where there is no 
apparent refractory period) and consecutive action potentials 
generated by the same neuron within a small timeframe, 
called bursts. This problem can be addressed by attempting 
to differentiate between the shapes of action potentials of 
distinct neurons through frequency-domain correlation. 

Another challenge is to preserve as much information as 
possible from the signal in order to enhance the performance 
of burst detection. 

A burst is defined as a short period of high-frequency 
occurrence of spikes, interspersed with periods of low-
frequency tonic activity [1]. Burst detection algorithms can 
be divided into two main categories, however all of these 
methods make use of only the spike times in order to 
determine whether a burst occurred. The first type, based on 
rate-threshold, considers firing rates and involves setting a 
threshold to monitor whether the neuronal activity (measured 
by firing rate) exceeds the threshold and if it does, it is 
considered a burst. The second type, based on inter-spike 
interval (ISI), considers a specific time interval between 
consecutive action potentials. If the time interval is shorter 
than the set threshold, a burst is considered to have occurred. 
Therefore, these methods are based on the computation of 
statistical characteristics of the data and the use of manual or 
calculated thresholds to identify bursts. 

In the next section we describe and analyze the most 
common burst detection methods and introduce a feature 
extraction method that adds information to the traditional 
time-based features used in burst detection. Furthermore, we 
propose a burst detection method that incorporates 
supplementary biological characteristics in the identification 
of bursting activity and a set of analyses based on correlation 
to assess the performance of a burst detection method. 

B. The acquisition of data 

In vivo electrophysiological data was recorded from the 
visual cortex of anaesthetised adult mouse using 32-linear 
probes (Cambridge NeuroTech) at 32 kSamples/s (Multi 
Channel Systems MCS GmbH) during a visual perception 
task with full-field drifting gratings. All animals subjected to 
in vivo extracellular recording experiments were 
anaesthetised using isoflurane and placed in the stereotaxic 
holder. Heart rate, respiration rate, body temperature and 
pedal reflex were monitored throughout the experiment. 
Multiple datasets were recorded over an interval of 4 to 8 
hours from each animal to minimize the number of animals 
used and to ensure their welfare. This approach demonstrates 
a commitment to minimizing the number of animals needed 
for experimentation while ensuring the acquisition of reliable 
and meaningful data. 

The experimental procedures and protocols underwent 
review and approval by the Local Ethics Committee 
(approval number 3/CE/02.11.2018) and the National 
Sanitary and Veterinary Authority (approval number 



 

 

ANSVSA 147/04.12.2018). The experiments were carried 
out in accordance with the ethical guidelines specified in the 
European directive, as well as the guidelines established by 
the Society for Neuroscience and the Romanian laws 
governing the protection of animals. The experiments were 
conducted in strict accordance with ethical guidelines and 
regulations, including the European Communities Council 
Directive 86/609/EEC, directive 2010/63/EU of the European 
Parliament, and Romanian Law 43/2014. These guidelines 
ensure the ethical treatment and protection of animals 
involved in scientific research. 

II. RELATED WORK 

A. Burst detection methods 

The ISIn algorithm takes as input data the timestamps 
sorted in ascending order. A number n of successive 
potentials is selected to be analyzed. For example, if n is 
equal to 2, the algorithm will analyze the time interval 
between the first and second action potential. This parameter 
determines the sensitivity of the algorithm. The algorithm can 
be adjusted through the parameter n and the threshold value. 
The ISIn method may struggle with multi-channel data that 
displays irregular activity [1].  

The ISI Rank Threshold (IRT) takes as input data the 
timestamps that indicate the moments at which action 
potentials occur, sorted in ascending order. The threshold is 
set in such a way that the probability of observing a number 
of peaks greater than the threshold is lower than a specified 
limit probability. Bursts are detected when the rank of the ISI 
is below the threshold indicating a transition from the inter-
burst period to the burst event. This method was introduced 
as a heuristic technique for unsorted spike data, and it was 
shown to have a poor performance in the detection of bursting 
activity of different types. 

The Max Interval (MI) algorithm requires several 
parameters such as the maximum start interval of ISI, the 
maximum end interval of ISI, the minimum inter-burst 
interval (IBI), the minimum burst duration, and the minimum 
number of action potentials in a burst. These thresholds 
determine the characteristics of the bursts to be detected. The 
algorithm iterates through the timestamps and checks certain 
parameters. The last check is to iterate through these obtained 
bursts and check if they meet the conditions of the minimum 
burst duration and the minimum number of action potentials. 
If they do not meet these conditions, they will not be 
considered as bursts. The greatest disadvantage of MI is the 
large number of parameters which may be difficult to 
regulate, however the parameters can be easy to interpret 
biologically which eases their use. 

The Cumulative Moving Average (CMA) method is 
based on the cumulative sum of the inter-spike intervals 
(ISIs) within a sliding window to identify bursts. The data 
consists of a sequence of timestamps indicating the moments 
at which action potentials occurred. The time interval 
between action potentials is calculated by subtracting 
consecutive timestamps. Parameters are defined for the size 
of the sliding window and the threshold. The CMA method 
may detect more bursting activity than it exists in recordings 
with unstable firing rates. 

The Rank Surprise (RS) algorithm is based on the idea 
that bursts are characterized by an increased firing rate of a 

neuron, which can be detected by analyzing the probability 
distribution of ISIs. Rank Surprise is based on the values of 
the inter-spike interval rather than the firing rate. Using this 
distribution, a fixed threshold for a maximum value of ISI is 
computed and this threshold is used to find sequences of 
spikes that contain lower ISIs and that maximize the surprise 
statistic. Any sequences that rise above the given surprise 
value are considered bursts. The RS method may assign, 
independent of the spike distribution, the same amount of 
spiking activity [7].  

The Poisson Surprise (PS) method is based on the idea 
that bursts are characterized by an increase in the firing rate 
of a neuron and that neuronal spiking follows a Poisson 
distribution. The algorithm computes the probability that a 
number of spikes can occur in a certain time interval given a 
Poisson process. Possible bursts are identified as sequences 
of spikes containing ISIs smaller than the mean ISI. These 
possible bursts are then modified to include neighboring 
spikes in order to maximize the surprise statistic, if any fall 
below the given threshold for the surprise value, they are 
discarded. The PS method may merge bursting activity that 
other methods consider to be separate or include more spikes 
than other methods [7]. 

These methods belong to the two types of detection 
algorithms, namely ISI or rate-threshold. Cumulative Moving 
Average, ISIn, ISI Rank Threshold, Poisson Surprise, and 
Max Interval are based on ISI, while Rank Surprise is based 
on rate. 

The use of multiple burst detectors and comparing their 
results may be a robust approach to burst detection [8]. By 
analyzing the data with different burst detection methods and 
comparing their results, researchers can gain a better 
understanding of the bursting activity present in experimental 
data. The agreement of several detectors would increase 
confidence in the presence of bursting activity. This 
convergence of results across multiple methods provides a 
stronger validation of the identified bursts. However, major 
discrepancies between the methods may indicate areas of 
poor performance of certain detectors. These discrepancies 
can be further investigated by examining the specific spike 
trains of interest, allowing researchers to understand the 
reasons behind the variations and potential limitations of 
certain burst detection techniques. A more detailed analysis 
of the above-mentioned methods is provided in section IV. 

B. Superlet 

In [9] a new transform is introduced, namely the Superlet 
transform, that addresses the limitations induced by the 
Heisenberg-Gabor uncertainty principle to the Fourier 
Transform and Continuous Wavelet Transform. These 
methods optimize either temporal or frequency resolution, 
finding only a suboptimal trade-off between the two. To 
address these limitations, the Superlet transform was 
developed, which allows for super-resolution in both time 
and frequency domains. This transform geometrically 
combines a set of wavelets with progressively narrower 
bandwidths.  

A Superlet was defined as a set of Wavelets with a fixed 
central frequency that covers a range of different cycles 
(progressively narrowing the bandwidth). It is defined in 
Equation (1), where f is the fixed central frequency, o is the 
order number, and c1, c2, ..., co represent the number of cycles 



 

 

for each Wavelet. The order number corresponds to the 
number of Wavelets in the set. The number of cycles that 
define the Wavelets in the Superlet can be chosen in two 
ways: multiplicatively or additively. Typically, the 
multiplicative mode is used, meaning ci = i * c1 [9]. 
                                SLf, o = { Ψf, c |c=c1, c2, …, co}                    (1) 

The response of a Superlet to a signal x is defined as the 
geometric mean of the individual responses of each Wavelet 
in the set. This response is mathematically described in 
Equation (2), where R[ψf,ci] represents the response of 
Wavelet i to the signal and is described by Equation (3), 
where the * operator denotes the complex convolution 
operator [9]. 
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III. PROPOSED  APPROACH FOR BURST DETECTION  

In order to detect bursts and use as much of the 
information from the signal as possible, the steps that were 
followed are data preprocessing, finding burst candidates by 
using specific characteristics, applying the superlets and 
exploring their Pearson’s correlation coefficients. The exact 
flow of steps of the proposed method is shown in Figure 1. 

The data preprocessing extracts from the recorded signal 
the information of interest. The first step is to filter the signal 
in the range of 300 to 7000Hz where the spiking activity is 
found [10]. As bursts are composed of spikes, the next step is 
to identify singular spikes by an amplitude threshold, usually 
set to the standard deviation of the signal multiplied by a 
constant value between 3 and 5 [10]. By extracting the 
individual spikes, the detection and extraction of candidates 
for bursting activity can commence. 

The Superlet transform provides the time-frequency 
power spectrum of a signal, transforming the one-
dimensional information of the signal into two-dimensional 
information of a time-frequency spectrum.  

Our hypothesis was that the statistical analysis of the 
correlation coefficient may provide the distinction between 
the sub-spikes of a burst and the tonic activity, due to the fact 
that the shapes of the sub-spikes in a burst are similar as they 
originate from the same neuron. Because of the similarities 
among spikes within the same burst, the expectation was for 
them to exhibit a higher correlation. This would allow the 
separation of bursting activity from tonic activity with the use 
of a threshold.  

 
Figure 1. Diagram presenting the flow of operations used in the detection of 
bursts in the proposed method.  

A. Burst characteristics 

A burst represents a signal composed of multiple spikes 
fired in short succession by the same neuron. An important 
characteristic is the time interval between two consecutive 

spikes (action potentials) within a burst. This is used in ISI-
threshold algorithms. In the literature, this interval varies 
between a minimum of 2-3ms and a maximum of 7-9ms [11]. 
The analysis of the time interval between spikes is therefore 
crucial in burst detection. 

Several other characteristics are discussed in the 
literature, such as the neuron's inability to discharge spikes of 
the same amplitude within a burst, or the fact that the neuron 
does not return to the resting state. As a result, consecutive 
action potentials within a burst will lose amplitude [12]. One 
way in which bursts can occur is through a slow depolarizing 
mechanism that halts the repolarization of a neuron and the 
initiation of the refractory period in order to maintain the 
generation of consecutive spikes that constitute a burst. The 
slow depolarization can be caused by specific ionic currents, 
such as the T-type calcium current. Signals that do not meet 
these conditions will not be considered as burst candidates. 
There are many other characteristics that have not been 
addressed, such as returning to the resting state after the 
discharge of an action potential or the neuronal activity 
between consecutive action potentials. 

In our approach, burst candidates are identified by 
iterating through the signal and finding peaks that exceed the 
threshold (usually in the negative potential direction). The 
distance between peaks is configurable. Based on the 
literature we have chosen the 2 to 7ms interval. In Figure 2, 
the red dots are the peaks, and they were extracted by finding 
local minima on a neighbourhood of ~0.3ms. In addition, we 
imposed that the values of the peaks of each subsequent sub-
spike within a burst must have a higher value than the 
preceding one (decreasing amplitude). 

 
Figure 2. A burst candidate extracted from real data by the proposed method, 
the blue line represents the signal, the red dots show the peaks of spikes, and 
the dashed red line represents the amplitude threshold used in the detection 
of spikes. 

B. Verifying requirements 

Histograms were used to verify if the characteristics 
specified in section A are met by the detected burst 
candidates. To verify that the identified spikes are not noise, 
their duration was examined. It can be seen in figure 3 that 
their width is between 0.6 and 2ms, which are indeed the 
widths that spikes present in real data. Another condition for 
a burst is that it has to contain at least 2 spikes. In Figure 3 it 
can be observed that the burst candidates contain between 2 
and 7 spikes. Additionally, in Figure 3 it can be observed that 
the inter-spike interval (ISI) ranges between 2 and 7ms. 



 

 

 

C. The Superlet Transform 

This technique allows us to extract time and frequency 
information simultaneously and enables for a better 
characterization of a burst, burst candidate, or spike.  

To obtain the spectrum, the following parameters were 
used: order 2, 1.5 number of cycles, and a sampling frequency 
of 32000. The spectrum is visualized within the frequency 
range of spikes of 300 Hz to 7000 Hz. These parameters were 
found to be optimal for the classification of spikes [13]. 
Figure 4 shows an example of the spectrogram obtained by 
the Superlet transform and its corresponding burst signal. 

 
Figure 4. Spectrogram of a burst candidate, extracted from real data by the 
proposed method, containing three sub-spikes. 

D. Spectrogram separation into sub-spikes 

The burst candidate spectrogram needs to be divided into 
smaller spectrograms specific to each spike in order to allow 
the analysis of individual sub-spikes within bursts and enable 
the calculation of the correlation. By examining sub-spikes 
from the same channel and comparing with sub-spikes from 
different channels located at a relatively large distance, we 
computed the distributions of the expected correlations 
between spectrograms of spikes from the same and from 
different neurons. Because at a large distance, it is very 
unlikely to record spikes from the same neuron, across 

channel correlations give us the expected value of correlation 
between spike spectrograms of different neurons. The 
distribution of correlations between spectrograms of spikes 
within channels should in principle have a larger expected 
value than that of correlations across distant channels.  

To split the spectrograms, our initial approach was to 
divide the signal first and then generate spectrograms for each 
segment. However, this approach is flawed because abrupt 
transitions at the edges of the signal can generate border 
effects that distort the spectrogram's edge. One solution to 
mitigate the border effects is to pad the signal with zero 
values or gradually transition towards zero from the last 
value. However, this solution is computationally more 
expensive compared to calculating the spectrogram for the 
entire signal, where there are no border effects, and then 
selecting the sub-matrices of interest afterward. In Figure 5, 
we show the separation of the burst candidate shown in 
Figure 4 into its sub-spikes.  

 
Figure 5. The separation into sub-spectrograms of the burst candidate shown 
in figure 4 for each sub-spike of the burst candidate. 

E. Correlation Analysis 

Another problem we had to solve is that the separation of 
burst candidates into spikes based on local minima results in 
action potentials of different lengths, which consequently 
leads to spectrograms of different lengths, leading to a 
different number of columns. 

To calculate the correlation coefficient between two 
spikes, we need spectrograms of the same size so that the 
correlation will result in a single value. The method used to 
separate burst candidates based on the indices of action 
potentials results in spikes and spectrograms of different 
sizes. This problem is resolved by truncating the spectrogram 
of one or both action potentials. The duration from the 
beginning of the spectrogram to the column representing the 
peak of the action potential, as well as the duration from the 
peak column to the end, is calculated. The spectrogram(s) are 
then cropped accordingly, so that both have the shorter 
duration of either spectrogram before and after the peak. This 
ensures that the spectrograms being analyzed are of equal 
size, facilitating the calculation of correlation coefficients. 

Figure 3. The left panel presents the distribution of sub-spike count of bursts, the middle panel presents the distribution of spike widths, whilst the right panel
inter-sub-spike intervals of the sub-spikes present in detected bursts. 



 

 

Several types of correlation analyses have been made on 
the sub-spikes of burst candidates from single-channel and 
multi-channel perspectives. We have considered the 
correlation as adequate to indicate the correctness due to the 
characteristics of bursts. Spikes of the same neuron will have 
similar shapes [10] and as bursts are the spiking activity of a 
single neuron in a small timeframe, it is to be expected that 
the correlation of intra-burst spikes to be higher than the 
correlation between intra-burst spikes and tonic spiking 
activity. Furthermore, the correlation coefficients were 
calculated for sub-spikes originating from bursts on the same 
channel, as well as from bursts on different channels at a 
distance. As distant channels will record the activity of 
different neurons, it is to be expected that the bursts found on 
a channel by any burst detection method will have higher 
correlation coefficients than the bursts of different channels 
as they present the activity of different neurons. After 
calculating the coefficients, the distribution of values is 
analyzed using histograms that have been normalized into 
Probability Density Functions (PDF) through division by 
their sum. The PDF was chosen as it provides comparable 
distributions.  

IV. RESULTS 

A. Analysis of burst detection methods 

In order to compare the burst detection algorithms (ISIn, 
ISI Rank Threshold, MaxInterval, Cumulative Moving 
Average, Rank Surprise, and Poisson Surprise), two metrics 
were used: the true positive percentage (the number of action 
potentials correctly identified as part of bursts and labeled as 
bursts, divided by the total number of action potentials 

labeled as bursts) and the false positive percentage (the 
number of non-burst action potentials incorrectly identified 

as bursts, divided by the total number of action potentials in 
bursts). 

These metrics measure how well the algorithms perform 
in terms of correctly detecting bursts (true positives) and 
incorrectly identifying non-bursts as bursts (false positives). 
The synthetic data [7] used to analyze these methods is 
comprised of labelled simulations of 300 seconds that allow 
for the measurement of correctness of the methods. Multiple 
types of data were created, the non-bursting and non-
stationary types of data do not contain any bursts, while the 
regular, long, high frequency and noisy types contain bursts. 
Each data type contains 100 examples of spike trains. In 
Figure 6, we show one spike train of each data type. 

 
Figure 6. Types of bursts, each subplot shows a different type of simulated 
data indicated by the label on the left of each subplot. The data is composed 
of timestamps and as such 1s indicate activity and 0s no activity. 

Each method was analyzed with the parameterizations 
suggested in the corresponding articles and the metrics were 
calculated for each type of data. In Figure 7, we present the 
true positives for each data type as a panel, and the x-axis 
indicates the method, the same layout is used for false 
positives presented in Figure 8. 

By analyzing Figure 8, it can be observed that the 
methods do not, generally, misidentify non-bursting activity 

as bursts. For high-frequency bursts, long bursts, and regular 

Figure 7. True positive percentage, each subplot shows the evaluation on the percentage of true positives (ranging from 0 to 1) found in a specified data type 
(indicated by the subtitle) by each method (indicated on x-axis labels). 



 

 

bursts, the percentage of elements misidentified as bursts is 
0. This suggests that the parameterization of the data for these 
algorithms is very good, as the elements identified as bursts 
are clearly bursts due to the lack of false positives. 

The only case in which misidentification is present is for 
noisy bursts, which are the hardest to identify. The Rank 
Surprise, Poisson Surprise, and Cumulative Moving Average 
algorithms rarely misidentify a non-burst as a burst. ISI Rank 
Threshold falls in the middle, identifying more errors, while 
ISIn and MaxInterval misidentify bursts more frequently than 
the other methods. Although ISIn and MaxInterval have more 
false positive identifications, the overall error rate, as seen in 
the figure, is not very high, averaging around 22%. 

Although Rank Surprise, Poisson Surprise, and 
Cumulative Moving Average algorithms have a very low rate 
of false positives, as seen in Figure 8, they also have a very 
low rate of true positives as can be seen in Figure 7. The ISI 
Rank Threshold algorithm performs slightly better in burst 
detection than the previous two. On the other hand, ISIn and 
MaxInterval, despite having an approximate 20% false 
positives rate, but only in the case of noisy bursts, also have 
the highest rates of correctly identifying bursts. 

Analyzing the perspective of correctly identified burst 
types by these two algorithms, for high-frequency bursts, 
MaxInterval has an average identification rate of almost 
100%, compared to ISIn which has an identification rate of 
approximately 96%. From the perspective of long bursts, as 
seen in Figure 7, MaxInterval performs much better, correctly 
identifying approximately 82%, compared to ISIn which only 
identifies about 30%. This significant difference can also be 
observed for regular bursts, with MaxInterval providing an 
identification rate of approximately 97%, compared to ISIn 
which has around 62%. However, in the context of noisy 

bursts, ISIn performs slightly better than MaxInterval, with 
the former having an approximate 90% identification rate, 
while the latter has approximately 85%. 

B. Analysis of correlation values on real data 

The MI burst detection method offers promising results 
for the simulated data. This subsection analyses its 
performance on real electrophysiological data, that has no 
ground truth, through the correlation coefficient. We have 
analysed the performance of the MI method using the 
parameterization suggested by the authors of the method and 
also using empirically chosen parameters. Here, we will 
compare the proposed method against the two previously 
mentioned options for the MI method. In Figure 9, we present 
a burst extracted the MI method using the suggested 
parameterization. 

 
Figure 9. Burst candidate extracted from real data by the MI burst detection 
method, the blue line represents the signal, the red dots show the peaks of 
spikes, and the dashed red line represents the amplitude threshold used in the 
detection of spikes. 

Figure 8. False positive percentage, each subplot shows the evaluation on the percentage of false positives (ranging from 0 to 1) found in a specified data type 
(indicated by the subtitle) by each method (indicated on x-axis labels). 



 

 

An initial hypothesis was that the correlations would be 
higher for action potentials originating from bursts on the 
same channel compared to those from different channels at a 
distance. This would aid in the problem of burst detection, as 
the identification of the source of action potentials, whether 
from a burst or an individual discharge, could be based on a 
simple correlation threshold. If the action potentials 
originated from different neurons, they would not form a 
burst. This analysis is shown in Figure 10 for the both the 
proposed method (left) and the MI method with the suggested 
parameterization (right). The correlations resulted from the 
sub-spikes of bursts identified by the proposed method on a 
single channel are much more concentrated towards values of 
1 than those of the MI method, indicating that the sub-spikes 
identified are more similar. Furthermore, there is a visible 
disparity between the distributions of the same channel versus 
different channels for the two methods, indicating that the 
bursts detected by the proposed method are more distinctive 
across channels. As mentioned previously, it is to be expected 
that the sub-spikes of bursts from different channels to have 
lower correlation values as they originate from different 
neurons. In Figure 11, we show the comparison between the 
correlation PDFs for the same channel across the three 
methods on the left and for distant channels on the right. The 
highest correlation values for the burst sub-spikes are given 
by the proposed method, however the suggested 
parameterization of MI results in the most skewed 
distribution towards lower values for the burst sub-spikes of 
different channels. For this analysis, the correlations provided 
by the chosen parameterization of MI results in a distribution 
with its peak between the two methods. 

 

 
Figure 10. The left panel shows a comparison between the correlation PDF 
between burst sub-spikes of a single channel versus the burst sub-spikes of 
distant channels for the proposed method, the right panel shows the same 
analysis for the MI method with the suggested parameterization. 

 
Figure 11. The left panel shows the correlation PDF of all burst sub-spikes 
against each other of a single channel for each of the methods, the right panel 
shows the correlation PDF between burst sub-spikes of two different distant 
channels. 

Another hypothesis was that the correlations between 
intra-burst sub-spike would be higher than the those between 
burst sub-spikes and the tonic activity of the same channel 
because burst sub-spikes will have more similar waveform 
shapes than tonic activity as the sub-spikes originate from the 

same neuron. This analysis is shown in Figure 12, for the both 
the proposed method (left) and the MI method with the 
suggested parameterization (right). The correlations resulted 
from the intra-burst sub-spikes identified by the proposed 
method are much more concentrated towards values of 1 than 
those of the MI method, indicating that the sub-spikes 
identified by the proposed method are more similar. Our 
hypothesis was partially confirmed as the correlation values 
of intra-burst sub-spikes are indeed overall higher than those 
between burst sub-spikes and tonic activity, however not by 
a significant amount regardeless of the burst detection 
method. In Figure 13, we compare the correlation PDFs for 
the intra-burst sub-spikes across the three methods on the left 
and for bursting against tonic activity on the right. In spite of 
the noticeable difference between the distributions on intra-
burst sub-spikes of the three methods, the comparison across 
methods between burst sub-spikes and tonic activity shows 
no significant difference across the three methods. 

 

 
Figure 12. The left panel shows a comparison between the correlation PDF 
between intra-burst sub-spikes of a single channel versus the burst sub-spikes 
and tonic spiking activity for the proposed method, the right panel shows the 
same analysis for the MI method with the suggested parameterization. 

 

 
Figure 13. The left panel shows the correlation PDF of intra-burst sub-spikes 
of a single channel for each of the methods, the right panel shows the 
correlation PDF between burst sub-spikes and the tonic spiking activity of a 
single channel. 

Upon these explorations, a clear differentiation point in 
the distribution peak could not be found for each case and for 
some cases the values are distributed quite similarly and close 
to the value of 1. Therefore, it is not possible to find a simple 
threshold that would produce separation for every situation. 
Consequently, a more suitable similarity metric on 
correlation is available for exploration and other correlation 
functions could be investigated. Nevertheless, the 
comparative analysis of correlation values can offer insights 
into the performance of detection methods for a variety of 
conditions.  

V. CONCLUSION 

Regarding the ability of burst detection algorithms to 
identify bursts, although it is desirable to have as few 
incorrectly identified bursts as possible, we also need a large 
number of correctly identified bursts. Analysing the overall 



 

 

results, we can say that the ISI Rank Threshold, Cumulative 
Moving Average, Rank Surprise and Poisson Surprise, and 
algorithms do not provide satisfactory results. The most 
performant algorithms for the identified data are MaxInterval 
and ISIn, with MaxInterval consistently achieving correct 
identification for all types of bursts, while ISIn’s 
identification capability varies depending on the types of 
bursts. In conclusion, MaxInterval offers high performance 
for all types of bursts for the analysed synthetic data. 

Several conclusions emerge, significant research has been 
conducted on bursting activity and its detection yielding 
promising results. Nevertheless, the quest for a golden 
detection method remains unfulfilled. With the advancement 
of experimental technologies, the future will require the 
development of more performant burst detection and analysis 
techniques.  

A comparison between the proposed method and other 
burst detection methods is difficult. Firstly, these detection 
methods make use of only the spike times as while the 
proposed method requires more information from the 
recording. Secondly, the comparison between burst detection 
methods was made on synthetic data containing the ground 
truth, however for the analysis of performance in a real 
environment no ground truth is available. Thirdly, a 
comparison between methods that require a different amount 
of information would bias the results to favour the more 
complex algorithm resulting in an inequitable comparison. 
Furthermore, the criteria used in the detection of bursts of the 
proposed method is stricter than just the timing of neuronal 
activity, taking into account criteria such as the decreasing 
amplitude of the intra-burst spikes. These considerations are 
not quantizable in their impact throughout a comparison 
between existing methods and the proposed approach.  

With these limitations in mind, our comparative analysis 
is based upon the evaluation of correlation values across a 
variety of conditions between the proposed method for burst 
detection and the Max Interval method that obtained the 
highest results on synthetic data. In this study, we have 
analysed whether correlation can be used to differentiate 
between the bursting activity of different channels by 
comparing the results to the values obtained for the bursting 
activity of the same channel across these burst detection 
methods. We have also analysed whether the bursting activity 
detected by these methods can be separated from tonic 
activity through an evaluation of correlation values.  

Our exploration of correlation as a potential measure for 
differentiation revealed certain limitations. Despite initial 
expectations, the correlation values obtained from various 
cases were remarkably similar, making it challenging to 
establish a clear threshold for separation. Consequently, 
correlation alone proved inadequate for distinguishing 
between burst and non-burst cases. It would be unfair to 
exclude from contemplation the possibility that correlation 
might be an adequate tool and it is the burst detection 
methods that hinder its efficiency. However, this is a question 
that can only be answered as a deeper understanding of the 
bursting phenomenon is achieved in the domain.    

Alongside a novel burst detection method, we propose 
correlation as a viable analysis tool for the comparison of 
performance of burst detection methods and for the validation 
of correctness of these methods as we show that even though 

MI displayed promising results on synthetic data, its 
performance on real data is debatable as its bursts are hardly 
differentiable across conditions. Nevertheless, exploration of 
other correlation functions and other metrics is one of the 
possible directions for further investigation in the domain of 
bursting activity detection.  
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