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Abstract—Multi-photon microscopy is a widely used method
to measure cortical activity through the use of calcium indi-
cators called GCaMP. These methods have inherent limitations
stemming from the fluorophore as well as from the microscope
setup that effectively limit the rate at which the activity can be
measured. According to the Nyquist-Shannon sampling theorem,
this limits the bandwidth of activity that can be estimated using
these methods. Here we introduce and test an extension to
current recording setups based on irregular (jittered) sampling
that may be able to partialle overcome these limitations. We
generated synthetic datasets consisting of mixtures of oscillations
at different frequencies, sampled far below the Nyquist rate.
We show that by sampling the oscillations at multiple phases
using a random delay between acquired samples it is possible to
characterize the amplitude of an oscillation present in the signal.
Furthermore, the predicted amplitude associated to aliases of the
measured frequency is reduced. Finally, we show that it is possible
to detect and characterize an oscillation packet embedded in a
noisy, undersampled signal.

Index Terms—Gamma frequency, Undersampling, irregular
sampling, optimization, GCaMP

I. INTRODUCTION

Using fluorescent proteins coupled with two-photon mi-
croscopy is a common experimental technique in brain re-
search, as well as in other fields of biology and medicine.
While this method can be used to analyze the structure (as well
as structural changes) in various cells, it has also been used
to measure the activity of neurons, by coupling two of these
proteins into a structure that is sensitive to calcium (GCaMP)
[1]. This approach, enables the measurement of the activation
of hundreds of neurons simultaneously and had led to multiple
discoveries. Although this method is powerful, it has several
limitations that stem from how these proteins behave, as well
as limitations stemming from the recording hardware itself
[2]. These limitations constrain the frequencies that can be
observed and thus limit the usefulness of the method. Here,
we outline a possible, easy to implement solution which
may allow the measurement of high-frequency activity in the
brain (e.g. gamma oscillations) using GCaMP. The solution is
based on irregular (jittered) sampling. We generate synthetic

datasets sampled with both a regular and irregular sampling
scheme and apply a fitting algorithm to detect and predict the
amplitude of an oscillation at a given frequency, which is well
above the Nyquist frequency.

A. Problems arising from undersampling

One of the most well-known tenets of sampled signals is
the Nyquist-Shannon sampling theorem, which states that in
order to capture all of the available information in a signal
such that it is possible to reconstruct it, one needs to sample
at a rate that is at least double that of the highest frequency
present in the signal [3]. The consequence of attempting to
reconstruct signals sampled below the Nyquist rate is aliasing,
whereby the undersampled oscillation appears as multiple false
oscillations at lower frequencies distributed around multiples
of the sampling frequency, a phenomenon known as spectral
folding [4].

B. The limitations of GCaMP recordings

In order to study the functional mechanisms of the brain,
it is often necessary to use animal subjects, as they offer the
possibility of invasive recordings, as well as genetic tagging
with fluorophores (such as GFP or GCaMP), which allow to
record activity using various optical measurement techniques
[2], or with opsins, which allow to directly influence the ac-
tivity of the brain using light (referred to as optogenetics) [5].
Here, we will focus on multi-photon microscopy of neurons
tagged with a calcium dependent fluorophore, GCaMP, which
fluoresces when hit with a specific wavelength of light, only
in the presence of calcium. This allows to measure the activity
of the neurons because when these are active and fire action
potentials, an influx of calcium rushes into the cell body
[6]. This calcium influx is a correlate of the cell’s activity.
Recording signals from the brain using GCaMP has several
advantages compared with electrophysiological recordings, as
well as several limitations.

The main advantage of using GCaMP imaging is that it al-
lows to simultaneously measure the activity of a large number
of neurons, as well as measure the activity of structures that are
much smaller, such as synaptic boutons [7]. The light from a978-1-6654-0976-6/21/$31.00 ©2021 IEEE



Fig. 1. Components of generated signals The title of each subplot describes the role of the component in the final test signal.

tuned laser is focused onto the sample repeatedly in a raster-
style pattern, and the photons produced by fluorescence are
measures, producing a “video” of the fluorescence variations
in time [2]. The advantages of being able to measure a large
number of neurons or smaller neuronal structures and of being
able to track the neuron identity easily (compared to electro-
physiological methods), come with several shortcomings of the
fluorescent protein and of the hardware used to measure, both
having a detrimental impact on the sampling rate that one can
obtain. The first major drawback is that calcium signals have
slower dynamics than the electrical fluctuations at the level of
the neural membrane, effectively low-pass filtering the target
signal [8]. This limits the bandwidth of activity that we are
able to measure. With current calcium indicators this limit is
around 30-40 Hz [8], however it is constantly being extended
through the development of more advanced fluorophores with
faster dynamics. Newer versions, such as GCaMP7 may be
able to raise this limit to 60 Hz [9]–[11]. Another limitation
that stems from fluorophore dynamics is that in order for the
fluorophore to reach its excited state light must be provided
for a period of time (in other words the amount of time that
the light from the laser must be focused onto one “pixel” has
a lower bound). Both of these limitations set an upper bound
on the frequencies which can be routinely measured using this
methodology.

The second set of limitations arises from the hardware itself.
Practically, the speed at which the sample is scanned (the time
it takes to measure a frame of activity) is limited by how
fast one can move the light from the laser. The location of
the focal point is usually controlled by a two-mirror setup,

one oscillating quickly which determines the x position, and
one oscillating more slowly determining the y position [2]. As
such, the bottleneck in this system comes from how quickly
the x position mirror is capable of scanning a line. There are
many more factors which can influence this scanning speed
(such as the size of the sample, its depth compared to the
cortical surface, and so on), but essentially the net effect is
that in order to obtain good data, there is a hard upper bound
on the sampling rate that one can reach. Current microscopes
are capable of reaching a sampling rate of tens of Hz. Taken
together, the limitations associated to GCaMP imaging result
in an effective reduction, by several orders of magnitude,
of the sampling rate when compared to electrophysiological
methods, effectively limiting the types of activity that one can
observe. Nevertheless, the capacity to measure so many cells
at the same time is a major advantage for many experimental
applications. Therefore, being able to infer faster processes
from GCaMP imaging is highly desirable. Here, we investigate
a way to increase the scope of this measurement paradigm by
overcoming its bandwidth limitations through the use of non-
uniform (jittered) sampling.

C. Jittered sampling in other domains

Jittered sampling is the practice of measuring samples at
random (rather than fixed) time points [12]–[14]. Many factors
can contribute to a limitation of the sampling rate, effectively
setting a lower bound for the amount of time that can exist
between consecutive samples. Jittering these samples does not
violate this lower bound, but rather decreases the sampling rate
further by introducing random delays on top of the minimum



Fig. 2. Undersampling schemes applied to test signals. The red markers and line represent regular sampling, while the black markers and line represent
irregular sampling applied to the constant case (top), and packet case (bottom) respectively

time between samples. This has the effect of producing a finer
sampling grid and measuring the oscillations at more phases
than regular sampling does [15]. We can consider that this
is analogous to measuring at a much higher sampling rate,
dependent on the delay step that is introduced, and down-
sampling randomly to the actual sampling rate.

While irregular sampling schemes have been discussed and
proposed in mathematical theory since 1990, they have seen
limited use in practical applications [12]–[14]. Hennenfent
I& Herrmann (2008) proposed a method based on random
undersampling for wavefield reconstruction in the field of seis-
mology, arguing that random undersampling renders coherent
aliases as incoherent random noise [16]. Hollingsworth (2015)
also developed a method based on irregular undersampling
which would speed up structural MRI recordings by requiring
fewer samples, but be able to capture enough detail to be useful
[17]. To the best of our knowledge, nobody has proposed this
type of method for the measurement of cortical activity, which
has the particularities of not being stable (compared to the
MRI structure) and evolving on fast timescales (compared to
seismological data).

Our goal in this study was to evaluate if we could charac-
terize an oscillation from an undersampled signal, given the
known frequency of that oscillation. Multiple paradigms elicit
oscillatory activity in the brain at known frequencies, such as
the alpha oscillation ( 10 Hz) produced in the occipital lobe
when eyes are closed [18], or entrainment of gamma oscilla-
tions (30-150 Hz) by a flickering light at the flicker frequency
[19]. Gamma oscillations are of a particular interest because
recent studies have shown that entraining these oscillations
may be a viable treatment for Alzheimer’s disease [20]. To
better understand how this process occurs, a tool which would
allow the measurement of gamma oscillations in many neurons

simultaneously is needed. Thus, here we attempt to find a way
to extend current procedures for GCaMP recordings such that
such a measurement is possible.

II. MATERIALS AND METHODS

To test whether we could extract higher frequency in-
formation from a signal sampled below the Nyquist rate,
we generated multiple synthetic examples consisting of a
target oscillation, a distractor oscillation, and noise at a high
sampling rate, and then downsampled using either a fixed
sampling rate or a jittered one.

A. Test signal generation

For a first dataset, we generated long signals with mixtures
of pure oscillations. We began by generating a time vector of
5 seconds with a sampling rate of 10 kHz. We then applied a
sine function (eq. 1) on this time vector (t) with A equal to 5,
ω equal to 59 * 2 * π and φ equal to 0. This yielded a sine
wave with a frequency of 59 (we chose the frequency 59 as
this does not have divisors or multiples in the range 0-100) and
an amplitude of 5 (arbitrary units), sampled at 10 kHz, which
we considered our target oscillation (figure 1, left). Similarly,
we generated a signal representing the distractor oscillation
with an amplitude of 10 (figure 1, middle). The phase offset
and frequency of this distractor oscillation varied as a function
of the specific experiment, but in all cases, we only considered
integer frequencies between 1 and 100 Hz.

f(t) = A ∗ sin(ω ∗ t+ φ) (1)

We then also generated uniform white noise with values
between -10 and 10 to simulate very noisy measurement
conditions (figure 1, bottom). The final signal was then the
sum of the target oscillation, the distractor oscillation, and a



Fig. 3. Predicted amplitude on constant oscillation sets undersampled with regular (left) or irregular (right) schemes. The shaded areas represent the
standard deviation over 100 runs. Predicted amplitude of the target (blue) is shown as a function of the frequency of the distractor component (x axis). The
actual amplitude of the target is shown in red

noise vector. This final signal, as well as the original time
vector were then downsampled such that the sampling rate
was 25 Hz, yielding the 125-length input and time vectors.

For a second set of tests, we generated a localized burst of
oscillation at the target frequency instead of a pure, constant
frequency (figure 1, right). This was accomplished by taking
a 500 ms segment of the pure frequency we used before, and
adding it to the noise vectors we used above in the middle
of the generated signal. Here, we did not add a distractor
oscillation, because the goal was to see if we could localize the
oscillation packet in time as well as frequency. Furthermore,
the noise amplitude was reduced to 3, reflecting more realistic
conditions.

While standard undersampling to 25 Hz was accomplished
by taking the samples at a fixed distance of 40 ms in time
(figure 2, red), jittered undersampling was accomplished by
taking samples at a random uniform distance between 40
and 80 ms with an allowed step of 2 ms (samples could be
taken at 40, 42, 44. . . 80 ms; figure 2, black). For the second
set of tests, we reduced the maximum jitter time (between
40 and 50 ms) so that we had more total samples from
which to extract information. For the characterization of the
target oscillation the minimum necessary sampling rate (as
postulated by the Nyquist-Shannon sampling theorem) is 118
Hz, thus all sampling schemes applied here were significantly
below this minimum, i.e. signals were undersampled.

B. Gamma estimation procedure
To estimate the target oscillation amplitude, we attempted

to use a simple function fitting procedure. The model that
we attempted to fit was (eq.1), where the variables were
A and φ, and ω was a fixed parameter. The loss function
that we attempted to minimize was the mean squared error

between the observed amplitude at the given timepoints and
the predicted amplitude at those points. Finally, we used
the BFGS optimization algorithm [21] to minimize the loss
function of the given model by adjusting the variables.

III. RESULTS

A. Jittering reduces the predicted amplitude at aliased fre-
quencies

In the first analysis we tried to detect the amplitude of a
constant oscillation of 59 Hz from the signal containing noise
and a distractor frequency with the goal of determining which
frequencies would interfere. We first attempted to measure
only the effect of frequency of the oscillation, so in this case,
the phase offset between target and distractor oscillations was
set to 0. We ran 100 different simulations for distractor oscil-
lations of each frequency, generating different noise vectors,
and computed the standard deviation and average absolute
predicted amplitude. We considered the absolute amplitude
because the algorithm tended to set a negative amplitude and
the phase to the antiphase of the actual target. This tendency
is not in itself a problem because it is easily corrected by
checking if the amplitude is negative and correcting it by
inverting the amplitude and subtracting π from the phase.

In this test, with standard sampling (figure 3, left) we
were able to observe several large peaks in the predicted
amplitude at specific frequencies of the distractor (9, 34, 59,
84 Hz), while in all other cases, the predicted amplitude was
very close to the actual amplitude of the target frequency.
These results are to be expected due to aliasing. Jittered
undersampling, however, proved to make a dramatic difference
when compared to regular sampling, effectively enabling the
detection of the correct amplitude of the target frequency in



all cases (figure 3, right). The target oscillation was correctly
predicted in all cases, including the peak present at 59 Hz,
where the true amplitude of the oscillation was 15 (sum of
target and distractor). The variance of the predicted amplitude
was slightly higher in the case of jittered undersampling, and
the average predicted amplitude had peaks around the target
oscillation frequency at a distance of 17 Hz.

Fig. 4. Predicted amplitude on constant oscillation sets with a phase delay
between target and distractor oscillations undersampled with regular (left)
or irregular (right) schemes. The color represents the predicted amplitude
as a function of distractor frequency (y axis) and phase offset between the
distractor and target (x axis)

To further understand the effect of interfering frequencies
and what happens when we sample the mixtures irregularly,
we ran a similar analysis where we varied the phase offset
as well as the frequency of the distractor oscillation (figure
4). Practically, the first column in this figure represents the
average predicted amplitudes that were plotted in the previous
figure, and each subsequent column represents the average
predicted amplitude of the oscillations with a phase offset.

B. Jittering allows us to localize and characterize a gamma
packet

While this first series of tests allowed us to verify and
understand both how jittered sampling impacts our ability to
extract high-frequency information from undersampled sig-
nals, as well as the limits of our ability to predict, they are very
far from a real test case. Activity in the brain is rarely constant
over such long time periods; in other words, we would expect
the oscillation amplitude and frequencies to change over a
period of 5 seconds, hence the reason for generating the packet
sets [22]. For this set of tests, we attempted to fit all integer
frequencies from 1 to 100 on each analysis window of 500 ms
with an analysis step of 10 ms, yielding a time by frequency

plot with the predicted amplitude for the regular as well as
irregular sampling schemes. This procedure was repeated 100
times with different noise vectors in order to obtain an average.

Fig. 5. Predicted amplitude on packet oscillation sets in time undersampled
with regular (left) or irregular (right) schemes. The predicted amplitude of
each frequency (y axis) is shown in time (x axis).

The results can be seen in figures 5 and 6, where we
show the predicted amplitude for all frequencies over time and
averaged over the time during which the pulse was present, re-
spectively. Similar to the continuous case, the fitting algorithm
predicted a higher amplitude for the target oscillation than any
other frequency only in the case of irregular sampling. In the
regular sampling condition, on the other hand, oscillations with
a frequency which is a multiple of the sampling frequency had
the highest amplitude, as well as a series of smaller aliased
peaks. These analyses show that it is possible to describe
an oscillation well in both frequency and time, even given
undersampled signals, provided that the sampling times are
jittered with respect to one another.

IV. DISCUSSION

Here we have shown that introducing a random jitter
between the frames in a GCaMP recording could enable
the inference of information about high-frequency activity,
which is not normally accessible in regular sampled calcium
signals. First, we have shown that given a long enough time
interval on which to measure an unchanging signal, one can
accurately predict the amplitude of an oscillatory component
at a given frequency. While with a regular sampling scheme,
this achievement is not possible due to the appearance of
aliases, using irregular sampling one can recover the true
oscillation amplitude for the known frequency. This is most
likely enabled by the multiple phase sampling that occurs due
to the jitter between the samples. This result was reinforced
when generalizing the analysis to conditions where distractor
oscillations with a phase offset were mixed with the target
oscillation. Furthermore, these results show beyond reasonable



Fig. 6. Predicted amplitude on packet oscillation sets averaged over the time windows where the oscillation was present in signals undersampled with
regular (left) or irregular (right) schemes. The shaded areas represent the standard deviation over 100 runs. The predicted amplitude of oscillations at each
frequency (x axis) is shown, where the only real oscillation present is at the intersection of the grey and red lines.

doubt that these feats are possible, given the ability of the
algorithm to function in such difficult signal to noise ratio
conditions (noise and distractor amplitudes were twice that
of the target signal). Finally, we tested the capabilities of
the algorithm by trying to predict the frequency, amplitude,
and timing of an oscillatory packet from a more realistic
signal. While in this case, due to the analysis window being
much smaller, the random jitter had to be reduced, and the
algorithm’s performance suffered under more noisy conditions,
we were able to accurately distinguish the target oscillatory
packet under more realistic conditions. Given these findings,
we propose using irregular sampling schemes in conjunction
with multi-photon microscopy on GCaMP fluorophores for the
detection and characterization of oscillations in the brain.

A. Implementing jittered undersampling in recording hard-
ware

Here, we generated toy datasets at a very high sampling
rate (essentially mimicking an analog signal), and applied
two different undersampling schemes in order to simulate
recording an analog signal with either a fixed, or jittered
sampling rate. In order to apply irregular sampling in real
recording cases, the jittering of the samples must be achieved
through the recording setup itself. In the case of two-photon
microscopy, this may be achieved by measuring more than
one frame while scanning, which would amount to changing
the software that controls the vertical axis mirror, such that
it measures one or more extra lines in each frame, before
resuming the ordinary raster pattern. This would effectively
introduce a random delay between frames with a minimum
time offset equal to the duration it takes to measure one line,
achieving a jittered sampling scheme.

B. Testing on real data

While our results show that it is possible to characterize
high frequency activity given a long enough packet in high
amplitude white noise conditions, these conditions do not
fully match what we would expect to see in the brain. The
first major difference between natural brain activity and our
generated signal is that the amplitude of brain oscillations
changes in time, which could lead do erroneous estimations
of amplitude. Secondly, the oscillation packet length is often
smaller than the one used in this experiment, which could
potentially limit the use of this method to experiments where
the oscillation is entrained powerfully. Finally, the statistics of
the noise in the brain more closely match pink noise, which
has a 1/f power distribution, rather than white, which has a flat
power distribution. These differences may impact the accuracy
of our estimation in various ways, but it is difficult to test all
combinations of possible sources of error without access to
real data recorded with irregular sampling.

To further consolidate these results, cementing this method-
ology for the measurement of high frequency activity in the
brain, further experiments on real data could be performed.
One example of such a study would be to apply a stimulation
paradigm known to cause high-frequency activity in the brain
and to alternatively measure the resulting oscillations using
the method outlined above. One could then use high sampling
rate electrophysiological methods to cross-validate the results.
This way, we could prove that the methodology is viable for
in vivo use cases, as well as see what other practical problems
or limitations arise from its application.



V. CONCLUSIONS

Here we have introduced and tested a new measurement
paradigm for high frequency brain activity on simulated
datasets based on irregular sampling. We have shown that the
finer sampling grid provided by such a sampling scheme offers
the possibility of correctly estimating the amplitude, frequency,
and timing of oscillations with frequencies above the Nyquist
frequency. Current two photon microscopy of calcium signals
is a very powerful tool for the measurement of cortical activity,
with the major limitations stemming from the limited sampling
rate. We argue that introducing a jitter between samples by
measuring extra lines at the end of each frame would enable
calcium imaging to reveal high-frequency oscillations, which
can normally not be accessed through this technique.
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frequency super-resolution with superlets,” Nature communications,
vol. 12, no. 1, pp. 1–18, 2021.


