
A Generative Adversarial Approach for the
Detection of Typical and Drowned Action Potentials

Alexandru Dodon
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
alex@alexdodon.net

Marius Adrian Calugar
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
calugar.marius25@gmail.com

Rodica Potolea
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
rodica.potolea@cs.utcluj.ro

Camelia Lemnaru
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
camelia.lemnaru@cs.utcluj.ro

Mihaela Dı̂nşoreanu
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Abstract—Spike sorting methods are central for the interpre-
tation of extracellular recordings and provide insight into more
complex brain processes. To be able to apply the sorting methods
spikes are detected, conventionally, by using an amplitude thresh-
old that takes into account the features of the signal. This offers a
straightforward detection solution that is able to discriminate the
background noise, but comes at the cost of ignoring spikes with an
amplitude below the threshold and limiting the picture provided
by the recording. We propose a machine learning approach that
captures spikes overlooked when considering only the amplitude.
The proposed method leverages Generative Adversarial Networks
(GANs) to learn particularities of the spike and noise components
of the recordings and then extract the underlying components
of novel samples with the goal of detecting the presence of
spikes. We quantify the detection metrics with respect to the
signal to noise ratio of the recording and show that the proposed
method exhibits significantly higher sensitivity while providing
comparable specificity to conventional spike detection methods
across all signal environments, especially when spikes are almost
drowned in the background noise.

Index Terms—Neuroscience, Signal processing, Machine learn-
ing

I. INTRODUCTION

The recent advancements in the processes of extracting
and storing datasets from various biomedical fields, led to
the application of some Machine Learning techniques, shown
to be effective in situations where the data is plentiful, on
tasks in these domains. Spike sorting is a class of techniques
that operate mainly on electrophysiological data, with the
goal of making sense of the neuronal chatter by identifying
the moments when certain neurons fire. The task of Spike
Detection is a step in the process of Spike Sorting, in which
one tries to detect the presence of action potentials in data
signals. This detection is usually done with a threshold based
method. This approach is not ideal because it will either be

too strict in including samples, thus losing a significant part of
the recording or it will allow more samples with the trade off
that a part of these will be polluted with noise. For addressing
these issues, this paper proposes a new method of performing
Spike Detection by applying Source Signal Separation.

Source Signal Separation is the task of obtaining a de-
composition formed from several source signals from a set
of mixed signals. Generally, the difficulty of this task stands
in its underdetermination and is often addressed by imposing
constraints on the modeled mixing process or source signals
that may be derived either from a generative model or justified
by good empirical performance.

In a recent advancement [1], these source signals are esti-
mated with the help of a machine learning framework called
Generative Adversarial Networks [2]. GANs are able to learn
output data distributions without the need of explicitly defining
a parametric formula for them. In our scenario the additive
sources are represented by the background noise and the actual
spike detected in each data sample. We noticed that the initial
GAN formulation was hard to train so we chose to perform
our experiments with a Wassertein-GAN formulation [3] that
implemented gradient penalty [4].

With these configurations we showed a performance im-
provement on the task of Spike Detection in comparison with
the state of the art threshold method, especially in scenarios
where the spike component of the signal is deeply hidden in
the background noise.

II. RELATED WORK IN SPIKE DETECTION AND SOURCE
SEPARATION

As was stated above, the most common method of detecting
action potentials in extracellular signals is done by setting a

978-1-6654-0976-6/21/$31.00 ©2021 IEEE



hard threshold that is calculated either manually or automati-
cally as the signal’s mean plus a factor of standard deviation.
Taking standard deviation of the signal for the threshold, in
scenarios where the spike amplitude is large leads to values
that are too high. To address this issue, an approximation for
calculating the threshold while taking into account the standard
deviation of the background noise was proposed in [5]:

Thr = 5σn σn = median

{
|x|

0.6745

}
(1)

where x is the band-pass filtered signal. Another approach of
tackling the Spike Detection problem was made in [6], with a
template matching method.

Regarding the initial step of training the GAN models,
the inclusion of a Wassertein distance in the loss of the
network was shown [3] to diminish some of the most common
issues that could appear while training. In this formulation the
loss function minimizes the Wasserstein-1 distance between
the generated and original data distributions. Furthermore the
authors in [4] have found a new way of imposing the Lipschitz
constraint on the loss function of the critic, by including a
new term called gradient-penalty that also replaces the need
for parameter clipping.

In the paper ”Generative adversarial source separation” [1],
the authors have used a Wassertein GAN approach in order
to compute the estimation of the additive sources of a given
mixed signal. The main advantage of using WGANs for this
task is that there is no need for the specification of output
distribution. A mixed signal x ∈ RL is modeled by the
following generative process:

h1 ∼ platent (h1) , s1 | h1 ∼ pforward 1
(s1 | h1)

h2 ∼ platent (h2) , s2 | h2 ∼ pforward 2 (s2 | h2)
x | s1, s2 ∼ pmixture (x | s1 + s2)

(2)

Where h1 and h2 are latent variables and pforward 1
(s1 | h1) is

the forward model for the sources.
The sources are then approximated by the the respective

generators and the synthetic mixture is compared to the
original one and a loss is computed and used for gradient
descent on the latent variables of the generators. This results
in exploring the learned distributions and producing a plausible
approximation of the given mixture, the respective sources
being extracted in the generated components.

III. MATERIALS AND METHODS USED

A. Dataset Description

To be able to train the generative models and to evaluate the
detection performance, we employed a synthetic dataset [7]
that was generated with the purpose of benchmarking spike
sorting algorithms. By the generation process, the dataset is
labeled and this offered a good environment for both training
the generative models and to validate the performance of the
method.

This dataset consists of 95 simulations, generated from a
database of monkey recordings, of a length of 10 minutes
each, out of which we used 24 for a cumulative recording time

Layer Output Shape
Latent Variable 1 X 200
Linear 1 X 80
SoftPlus 1 X 80
Linear 1 X 80
SoftPlus 1 X 80
Linear 1 X 80

TABLE I
ARCHITECTURE OF THE

GENERATOR

Layer Output Shape
Input Sample 1 X 80
Linear 1 X 40
Tanh 1 X 40
Linear 1 X 1

TABLE II
ARCHITECTURE OF THE CRITIC

of 4 hours. Each simulation was created at 96 KHz and was
then resampled at 24KHz to mimic real recordings that sample
continuous signals at discrete time intervals. The dataset
includes both single unit and multi unit activity beside the
noise. These are different categories of activity with regards
to spike sorting, single unit activity falling more closely to the
electrode tip - up to 50µm- while multi unit activity falls from
50µm to 140µm. The original waveforms of the spikes had
316 points at 96 KHz. They have been mixed and scaled in
the generated signal and down sampled at 24 KHz resulting
in a length of 79 points. For each original waveform we know
the neuron to which it is related and the position of its first
sample in the generated signal.

B. Generative Adversarial Networks

The utilized architectures and activation functions for the
generators and critics are shown in Tables I and II respectively.
As the neural networks that are very deep tend to need huge
amounts of data in order to perform their tasks, we decided
to keep the models fairly shallow with only 3 layers for the
critic and 5 for the generator.

C. Training Setup

For the training of the models we adopted a WGAN-GP
configuration, where the loss function of the critic over a batch
of size m consisting in real samples xi, samples of the random
distribution hi, and a random number ε sampled uniformly
between 0 and 1 is:

x̃← Gθ(h)

x̂← εx+ (1− ε)x̃

min
w

1

m

m∑
i=1

Cw(Gθ(h
i))− 1

m

m∑
i=1

Cw(x
i)+

λ
1

m

m∑
i=1

(‖∇x̂Cw(x̂)‖2 − 1)
2

(3)

Here λ is the penalty coefficient and we have set it to 10.
The Generator’s loss is then:

min
θ
− 1

m

m∑
i=1

Cw(Gθ(h
i)) (4)

We used the RMSProp optimizer with a learning rate of
0.0001 and performed 5 training epochs with a batch size of
64. For each training iteration of the generator the critic was
trained 10 times.



D. Source Separation

The generated mixture consists in a linear combination of
the outputs from the two generators and the separation process
is driven by the chosen loss function:

min
h1,h2

1

n

n−1∑
t=0

(
fθ̂1

(
ht1
)
+ fθ̂2

(
ht2
)
− Stsignal

)2
(5)

Where Ssignal is the signal that is undergoing separation,
fθ̂1 and fθ̂2 are the feed forwards of the generators for spikes
and noise and h1 and h2 are the respective latent variables.

A hyperparameter of the separation process is the number
of iterations of gradient descent, as well as the parameters
for the optimizer. We employed the Adam optimizer with a
learning rate of 0.001 and betas of 0.5 and 0.999. The number
of epochs was set to 3000.

E. Interpretation and Classification of Separated Signals

As a result of the separation, the classification process is
straightforward: we take the energy of the extracted spike
component and threshold it based on a threshold selected for
the best F1 score on the validation set.

F. Empirical Evaluation

In all our experiments, we applied a training / validation
/ testing split of 80%, 10% and 10% on a balanced dataset.
For an apt evaluation of the method, we chose to compare it
with amplitude thresholding methods that use a multiple for
the standard deviation from 1 to 5.

To be able to quantify the detection behavior for spikes that
are disregarded when considering just the amplitude, we test
the methods at different signal to noise ratios (SNR) from 1
to 6.

A uniform signal to noise ratio is achieved in the validation
and test dataset by artificially ”drowning” spikes. We model
a drowned spike window as a linear combination between a
scaled spike and a noise window:

Wdrowned = SF ·Wspike +Wnoise (6)

Then, for a given SNR and for each pair of spike and
noise window the scaling factor SF can be derived from the
definition of SNR:

SF =

√
SNR ·

∑
w2

noise∑
w2

spike
(7)

The results of the process for a target SNR of 1 are
exemplified in Figure 1.

To create a robust evaluation of the proposed method, com-
paring it to existing methods, 10 iterations of the validation
pipeline have been performed. For one iteration the following
have occurred:

• The balanced dataset consisting of 400 thousand windows
is shuffled and then split in 80% training, 10% validation
and 10% test dataset.

Fig. 1. Drowned Spike windows with a SNR of 1

• For each validation and test dataset variations with spe-
cific SNRs have been created.

• For each training dataset the GANs have been trained.
• For each combination of training dataset, validation and

test dataset with a specific SNR the following have been
run:

– The separation and classification of the signal win-
dows with our method.

– The thresholding of signal windows with current
thresholding methods.

At the end of each iteration, the predicted labels of each
method are collected and then used to compute the respective
sensitivities(true positive rates) and specificities(true negative
rates).

IV. RESULTS

We display the means and standard deviations of sensitivity
and specificity for all methods after 10 iterations in Figure 2.
The lightly shaded area represents the standard deviation.

Across all tested methods, the sensitivity decreases when
applied on data sets with a lower Signal to Noise Ratio. This
is to be expected for the thresholding methods because as SNR
decreases, the amplitude of the spikes present in the signal also
decreases and they become statistically similar to background
noise. After all, the background noise is created by the action
potentials of neurons whose firing is attenuated when it reaches
the electrode. That being said, our proposed method does not
singularly look at the maximum amplitude to detect spikes.
Therefore, it holds better recognition as the spikes become
drowned in the background noise.

The specificity of the methods also offer an interesting
insight inside the workings of spike detection. Threshold based



Fig. 2. Performance metrics.

algorithms for spike detection maintain almost constant speci-
ficity. This is to be expected as the underlying characteristics
of the noise does not change. On the other hand, the proposed
method’s specificity drops as it targets spikes more and more
embedded in the background noise.

In typical usage at a SNR of 2.5 to 3.5 it exhibits a better
sensitivity than all other methods except the 1 SD threshold
which due to its low specificity is not viable in a laboratory
setting. Meanwhile, our method’s specificity is comparable to
the most conservative thresholds. Especially at a SNR of 1, the
other methods become less attractive as while they maintain
their specificity, they lose most of the positive samples. On
the other hand, in the proposed configuration, our method,
while its specificity becomes comparable to thresholding with
2 SD, it’s sensitivity remains almost the same. This results
in capturing a significantly bigger portion of spikes that

historically could not be captured.

V. DISCUSSION

The method’s ability to distinguish spikes that are still well
formed as they become drowned in the background noise
opens up new avenues of research by expanding the available
data from recordings that already exist.

The key advantage of the proposed method is that the gener-
ators were trained on typical spikes, so it can be bootstrapped
on unlabeled recordings by existing spike detection methods.
This can allow the method to be laboratory-ready by taking the
samples relevant to the object-level problem and training the
model to distinguish spikes recorded by the specific hardware
available. The proposed method can also be applied on any
number of channels from a given recording.

The information used to enhance classification can be
increased by passing the extracted spike and noise sources
through the feed forward networks of the respective critics to
rate their plausibility.

These interpretations of the extracted sources can then be
used in conjunction with the extracted energy to build the
feature vector for a standard linear classifier or a multilayer
perceptron.

After the generative models are trained, the classifier can be
fed windows with a fixed length that are offsetted by a single
sample in order to filter a continuous signal of any length and
the spikes can be detected by setting a confidence threshold.

VI. CONCLUSION

We developed a method that is able to leverage generative
models for the separation of electrophysiological signals into
spike and noise components with the objective of detecting
spikes. We showed promising performance increases compared
to current amplitude threshold-based methods, especially when
considering spikes drowned in the background noise.
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